

Mission/SOW

The mission of the ZAEC team is to design an over-cab camper shell exterior that can withstand the conditions of a "zombie apocalypse". Those conditions are described as follows:

- Experience no deformation when enduring vibrations from uneven roads (approx. 5-30 Hz)
- Have a total gross weight below 1800 lbs
- Limit the drag coefficient to a maximum of 0.8
- Withstand 200 lbs. of outside force with deformation less than 1/16 in

The ZAEC team strived to work collaboratively and efficiently to meet and exceed expectations.

Research

- There is a clear correlation between consumer interest in traditional camping and the demand for solutions that can provide sanctuary during extreme emergencies.
- Galvanic corrosion must be considered when pairing aluminum (0.79) and stainless steel (0.08) due to their significantly different anodic indices.
- Steel/Aluminum construction has cost, durability, and strength benefits. A steel frame with yield strength (53ksi) compared to that of aluminum (40ksi) allows for high strength, while aluminum panels will lower weight.
- 1/8-inch zinc-plated rivets is optimal for the given sheet metal gauge, offering mild corrosion resistance along with a shear strength of 260 lbs. and a tensile strength of 310 lbs.

Global Camping Equipment Market,

Zombie Apocalypse Escape Camper (ZAEC)

Juancarlos Munoz (ME/AE), Luis Reyes (MET), Derek Saenz (ME), Alex Sanchez (ME), Raquel Weese (ME/AE)

Final Design

- The final design ensures survival, storage, and comfort while addressing all critical factors.
- The shown design balances practicality, durability, and comfort for survival scenarios or off-the-grid outdoor use.
- The camper incorporates a reinforced aluminum frame with a durable shell for strength and longevity.
- The camper is optimized to manage loads, wind resistance, and other forces effectively.
- The design allows for future upgrades or feature integrations for versatility.
- Compact dimensions maximize aerodynamic performance while maintaining adequate usable space.

Static Testing

- A 200 lb. static load was applied to the top of the camper to assess its structural integrity.
- The resulting deformation measured 0.00767 in, which is significantly below our target threshold of 1/16 in.
- This confirms that the design ensures stability and durability under expected conditions.

Frequency Analysis

- It is crucial to avoid operating at the natural frequencies, as resonance can cause excessive vibrations and discomfort.
- The lowest frequency the camper will encounter during operation is 42 Hz.
- 42 Hz falls outside the undesired range of natural frequencies, the camper's design ensures a smoother and more stable ride.

Aerodynamics Testing

- A flow simulation was designed and executed in SolidWorks as a wind tunnel.
- The drag force coefficient was calculated and found to be at a maximum of 0.276.

Concept Development

- Before any "apocalypse survival" functionalities, it was imperative to engineer a high-strength, reinforced chassis capable of withstanding dynamic loads and environmental stressors.
- This approach ensures optimal structural integrity, load distribution, and modular adaptability for subsequent feature integration.

- The initial design for the camper shell is shown above.
- The left figure is the frame, while the right figure is the frame covered in a steel shell.
- The shell was redesigned based on the results of SolidWorks simulations (wind tunnel testing, vibrational analysis, static load testing).

References

[1] MatWeb. "Polypropylene, Homopolymer." MatWeb - Material Property Data,

[2] MatWeb. "AISI 1020 Steel, Hot Rolled." MatWeb - Material Property Data, www.matweb.com/search/DataSheet.aspx?MatGUID=6eb41a1324834878a1524129

[3] Triangle Fastener Corporation. "Galvanic Corrosion Compatibility Chart." Triangle Fastener Corporation,

trianglefastener.com/content/files/TFC/MASTER8/20D0CUMENT%20PbF%20FILES/252%2 Ogalvanic%20corrosion%20compatibility%20chart%20technical%20information.pdf. [4] Dassault Systèmes. "Viscous Damping Ratios." SOLIDWORKS Help, 2016, help.solidworks.com/2016/english/solidworks/cworks/r_viscous_damping_ratios.htm. [5] California Department of Transportation." "Truck Natural Frequency Preliminary Investigation." California Department of Transportation, dot.ca.gov/-/media/dotmedia/programs/research-innovation-system-information/documents/preliminaryinvestigations/truck-natural-frequency-pl-alty.pdf.